Добавить
Уведомления

Heterogeneous Continual Learning | CVPR 2023

CVPR 2023 Highlight: Heterogeneous Continual Learning by Divyam Madaan (NYU, NVIDIA), Hongxu Yin (NVIDIA), Wonmin Byeon (NVIDIA), Jan Kautz (NVIDIA), and Pavlo Molchanov (NVIDIA). We propose a novel framework and a solution to tackle the continual learning (CL) problem with changing network architectures. Additionally, we consider a setup of limited access to previous data and propose Quick Deep Inversion (QDI) to recover prior task visual features to support knowledge transfer. Project webpage: https://github.com/NVlabs/HCL

12+
16 просмотров
2 года назад
12+
16 просмотров
2 года назад

CVPR 2023 Highlight: Heterogeneous Continual Learning by Divyam Madaan (NYU, NVIDIA), Hongxu Yin (NVIDIA), Wonmin Byeon (NVIDIA), Jan Kautz (NVIDIA), and Pavlo Molchanov (NVIDIA). We propose a novel framework and a solution to tackle the continual learning (CL) problem with changing network architectures. Additionally, we consider a setup of limited access to previous data and propose Quick Deep Inversion (QDI) to recover prior task visual features to support knowledge transfer. Project webpage: https://github.com/NVlabs/HCL

, чтобы оставлять комментарии